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Abstract

We introduce the basics of quantum computing and simulation of quantum systems on
classical computers. We then discuss noise in quantum systems and how it is classically
modelled, along with the difficulties of simulating quantum noise on classical computers.
Our primary question is how to efficiently simulate quantum noise by leveraging existing
techniques based upon the Gottesman-Knill theorem, which provides efficient simulation of
circuits containing only Clifford gates. We follow this by describing our progress thus far in
exploring three primary approaches. First, exploring methods to decompose a noise operator
into a sum of cliffords via mixed integer linear programming and using these decompositions
to classically simulate noisy quantum circuits within the stabilizer formalism first proposed
by Aaronson and Gottesman (2004). We find that the a Clifford decomposition is not
guaranteed to have low rank decompositions and that at best the runtime of simulating noise
using Clifford decompositions would be O(2F), where k is the number of Kraus operators
applied. Second, we explore the process of dilating our space to convert our noise operators
into unitaries in a larger space. Specifically we propose two unitary dilation based algorithms
for simulating noise; Sz.-Nagy and Stinespring’s dilation algorithms. The two algorithms
yield respective run-times of O(ﬁsnz)’n”l.l?t) and O(n? Hle |&i] +n3 Zle |€:13). Third
we propose a theoretical framework for generalizing the T-Gadget approach developed by
Bravyi and Gosset (2016). Through numerical simulations we show that the generalized
framework can be used to produce noise simulation algorithms with efficient runtime and
space complexity.
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Chapter 1

Introduction

In the early 1980s, Feynman and Manin among others proposed the concept of a so-called
quantum computer that would simulate quantum systems more effectively than classical
computers, following the development of quantum computing theory [1; 13, ch. 4]. Since
then, quantum computing has been developed, studied, and applied to problems beyond
simulating quantum physics. Today, new quantum algorithms like Shor’s algorithm theo-
retically achieve exponential speed up in prime factorization and have the potential to be
used in fields such as cryptography, where quantum algorithms can potentially break widely
used RSA encryption schemes [13, ch. 4.1]; and in optimization, where quantum annealing
can solve optimal trading trajectory problems [? ].

Unfortunately, real-world quantum computers face significant challenges in producing
consistent results due to errors and decoherence brought on by quantum noise; when cutting-
edge applications may require circuits comprised of billions of gates, the error in implement-
ing a single gate in order to perform reliable computations must be orders of magnitudes
smaller than what is currently accomplishable on state-of-the-art quantum processors. In
order to solve this problems, researchers have been developing and testing quantum error
correction codes to increase the fault-tolerance of quantum devices, at the expense of in-
creased time or memory requirements [7]. Efficient simulation of noisy circuits on classical
computers would therefore allow those without access to quantum hardware to debug or
understand the boundaries of potential quantum speeds ups of quantum algorithms [? |.

However, the classical simulation of quantum systems remains a difficult problem due
to exponential computational complexity requirements. Namely, since an n-qubit quan-
tum system is represented by (C?)®", the amount of memory required to naively store a
state vector scales as O(2"); moreover, to evolve the system under a unitary transforma-
tion U € H((C?)®") requires O(23") time. Functionally, classical simulations have been
limited to systems with fewer than approximately 50 qubits [16], where for an example, the
Google Quantum ATl team experimentally performed a computational task on 53 qubits with
quantum hardware, which was later then estimated to take approximately 10,000 years' to
simulate using classical simulation [15]. One solution to this computational cost was in-
troduced by Gottesman and Knill, where he introduced the stabilizer formalism, a method
to simulate a subset of quantum circuits (namely circuits composed of Clifford gates) in
polynomial time. This was later improved to universality via Bravyi’s method which in-
volves including T gates to the set of Cliffords [5]. Bravyi shows that any unitary can be
simulated by decomposing it into C, H, P, and T gates and T gates can be simulated within
the stabilizer formalism by adding a mild exponent to the computational cost.

IThis figure is said to be exaggerated, by [15] and others.



However, some noise operators are not unitary and as a result, simulating this quantum
noise can be computationally expensive. It is at this hurdle that our research is situated:
In collaboration with NASA Ames Research Center (ARC) we aim to exploit the algebraic
structure of quantum noise to develop a computationally cheaper representation of noise to
be deployed in classical quantum simulations.

In this report, we will first introduce the necessary background to simulating quantum
circuits within the stabilizer formalism, and then we will talk about the different methods
used for simulating non-unitary noise channels. The first two methods we propose are
dilation methods, which allow us to lift our noise operators to a higher Hilbert space such
that the lifted operator is unitary, and then we employ Bravyi’s method to apply the
unitaries within the stabilizer formalism . The second method we propose is an extension
of Bravyi’s work which generalizes his T gadget to diagonal and off diagonal operators,
which allow us to implement many noise channels, as many are composed of diagonal and
off-diagonal operators [6]. We end with methods that held promise but were unfinished,
namely decomposing our noise operators into a sum of Cliffords, and applying each Clifford
to a copy of our circuit.



Chapter 2

Background

2.1 Gottesman—Knill theorem

Theorem (Gottesman—Knill theorem). A quantum computation performed with Clifford
operations and measurements of observables in the computational basis may be simulated in
polynomial time on a classical computer.

nl ) 6

The Gottesman-Knill theorem tells us we can simulate circuits composed of Clifford gates
in polynomial time. The Clifford gate set is a finite group defined by the generating set of
C, H, and P gates (mod U(1)). The Clifford group is the normalizer of the Pauli group,
meaning that conjugating a Pauli operator by a Clifford unitary results in another Pauli
operator. Specifically for U(n) being the n-qubit unitaries and P(n) being the n-qubit Pauli

group,

C =

oo O =
o O = O
— o O O
o= O O

C(n) = {c € U(n)|¥p € P(n),cpct € P(n)}
The process that allows us to simulate these Clifford circuits in polynomial time is based
on the stabilizer formalism. Note that the Gottesman-Knill theorem and the stabilizer
formalism supports cheap implementation of quantum entanglement, a property that is
hard for other frameworks to simulate [21].

2.1.1 Stabilizer formalism

A stabilizer state is any state |s) such that |s) = C'|0)*™ for some n-qubit Clifford C. All
stabilizer states are in wunique correspondance to a stabilizing group, Stab(|s)) = {P €
P(n) | Pl|s) = |s). The stabilizing group is a finite group of order n where |s) is an n-qubit
stabilizer state. Notice that when we apply a Clifford operator C' to a stabilizer state |s)
with a stabilizer group Stab(|s)) = (91,92, .- gn):

Cls) =Cyg;|s) = CgiCTC |s)

Then for the generators g; of Stab(|s)), Cg;CT are the generators of the stabilizing group
of C'|s). Because these generating sets are in one to one correspondance with a stabilizer

6



state, we can track the generators of the stabilizing group across the circuit instead of the
state vector itself. This initially seems computationally expensive as the process involves
matrix multiplication, but there is a computationally efficient way to update our stabilizer
group, and that is via the tableau method.

2.1.2 Stabilizer Tableau

The stabilizer tableau is a compact representation of the generating set of the stabilizer
group that can be efficiently updated using bitwise operations. The matrix can be repre-
sented as a binary matrix:

51 T11 *12 T1,3 T4 Z1,1 212 21,3 214
52 To1 ®22 T23 T24 221 222 223 224
83 3,1 ¥32 T33 X34 Z31 %32 233 %34
54 T4,1 T42 T43 T44 Z41 242 243 244

where s represents the sign( 1 for minus and 0 for positive), and x and z are binary ma-
trices representing the Pauli X and Z components, respectively. Each row of the tableau
corresponds to a generator of the stabilizer group. For example, the first stabilizer is equal
to

Si = 111211 @ T12212 ® 13213 @ T1421 4,

Tz 00— 1,01 - 2,10 - X,11 - Y

The ith column of the x matrix x; and z matrix z; together correspond to the ith qubit.

Notice, however, that this does not imply that the stabilizers of the ith column are nec-

essarily the stabilizers of the ith qubit in the system, as the stabilizer formalism supports

entanglement, so the qubits may be inseparable. As an example, consider the following
0 0

tableau:
1 11
1 11 0 0

The generating set for this stabilizing group is Stab(|¢1)) = {ZZ, X X}. Notice the columns
of the first and second qubits do not correspond to the stabilizing group of the individual
qubits, as they are an entangled state [¢T) = %(|OO) +|11)). Recall that the set {C, H, P}
are a generating set for all Cliffords, thus when creating and applying Clifford circuits, we
apply C, H, and P gates to our tableau. There are rules for how to update the tableau
when applying these gates which are outlined in [2]. Their improved tableau also allows
for random measurements in O(n?) time. The Stabilizer Tableau allows an efficient way
to store and update the stabilizing group for any n-qubit stabilizer state when applying
Cliffords to the system. Recall, however, that the Clifford gate set is not universal in that
we cannot apply all unitaries via a composition of C, H, and P gates. As it turns out,

including one more gate, canonically the T gate, makes this generating set universal.

2.2 Noise Channels

In this discrete setting, noise channels acting on our system are completely positive, trace
preserving maps mapping density matrices to density matrices, ¢ : p — p/. This mapping
is called operator sum representation.



Definition. Operator-sum representation. A map ® : p — p' has a Kraus operator-sum
representation (OSR) [i.e., ®(p) = >, KapKL with Yoa KiK., = I] if and only if it is
linear and completely positive trace preserving (CPTP).

It is important to note here that the Kraus operators K; may not be Clifford. In fact,
many of them are not even unitary. The noise channels we're interested in simulating
are noise channels where some or all of the operators are non-Clifford, as such channels
are more difficult to simulate. Consider two noise channels, in terms of their constituent
Kraus operators of some operator-sum representations: the phase dampening map and the
amplitude dampening map. The phase damping map is defined as ®(p') = pp+ (1 —p)ZpZ.
Then the Kraus operators are Ko = /pI and K; = /1 — pZ. This map can be understood
as:

, {p with probability p
pr=p =
ZpZ with probability 1 —p

The amplitude damping map is defined as ®(p) = Kong + KlpKI where the Kraus
operators are Ko = [0)(0] + /1 — v|1)(1] and K; = /7|0)(1|. This map can be understood
as:

|0) — |0) with probability 1
|1) — |0) with probability p

or if the density matrix is written as (g?g 15?0100) then p’ is given as
P00 VvV 1—="po1 : s
with probability 1 —
prrp = (W—wz;l (1—7)(1—;)00)) b e
v(1 — poo)]0) (0] with probability

2.2.1 Quantum trajectories method

Obviously, working with density matrices is much more expensive than working with pure
states, so we wish to avoid implementing OSR. Instead of working directly with operator
sum representation, we can apply a method that allows us to work only with pure states,
and still apply a full channel. Given a set of Kraus channels & = {Kj; ;} and a pure state
|1}, one can sample the output of applying the channels to a ket by sampling and applying
a single Kraus to the ket per channel by the given probability distribution:

pi = <?/)K£j|Ki,j¢>

More details of the algorithm can be found here[? |. This means that the probability
of choosing a given Kraus is dependent on the current state of the system. We also note
that the Kraus operators need not be Clifford or unitary, meaning they do not fit within
the stabilizer formalism and cannot be immediately decomposed into CHPT gates to allow
a gadgetized implementation. Thus we introduce various methods for applying these non-
unitary operators K to our stabilizer state |s).

Theorem 2.1 (Solovay-Kitaev algorithm [11]). Any unitary matriz can be approximated
through the Solovay-Kitaev algorithm within error €, which has been optimized to use
O(log(1/€)*4%) total gates.



The Solovay-Kitaev algorithm provides a computational efficient way to decomposing
unitary matrices into compositions of C,H,P and T gates. However, notice that the Clifford
decomposition of the T gate has rank 2. Thus, in order to simulate ¢ number of T-gates,

we need 2! tableus. [5] introduces the idea of a T-gadget, which can substitute the spot of
each T-gate.
[¥) — G P
0
|T1> el

Figure 2.1: T-gadget. We perform a forced measurement on the ancillary qubit to the |0) state.

Rather than relying upon a Clifford decomposition of the T-gate, one can initialize an
ancillary qubit in the |T) state and apply a series of Clifford operators and measurements

on the extra qubit and current state to achieve the same result as applying a T-gate.
Specifically, this |T) = <ei’1 /4>. Although using T-gadgets removes the cost of applying
the T-gate, there is a new cost in terms of storing these ancillary qubits held in the |T')-
state. Specifically, we must store |T)*". Notice that |T') actually is not a stabilizer state.
Thus, the cost comes from the stabilizer decomposition of |T')*

Notice that |T') = [0) 4+ ¢”™/4|1). Thus, an upper bound on |T>®t (|0) + eim/4|1))®?
which has rank at most 2!. However, because |T) is tensored with itself many times, there
is reason to believe that one can compress the decomposition of the large tensor product
into one with fewer terms. Bravyi and Gosset goes through some details showing that one
can find a decomposition of rank %ﬁ which approximates |H >®t within an error bound of
0.
cos(m/8)
sin(7/8)
|H >®t with a low rank decomposition, then they can also obtain an efficient decomposition
of |T)** by applying Clifford gates and a phase shift.

We work with |H) instead of |T') because |H) has nicer properties. Namely, that |H) =
W where v := cos(n/8). Thus, if we define |0) := |0) and |I) := |+), then we get the
expression:

Notice that |T') = e™/8HP'|H) for |H) = <

>. Thus, if one can represent

ot _ \0>+|+>
[H)™ = (- %t ;Ftlxl ) (2.1)

Definition 2.1 (Z(L£)). The normalization function Z maps subspaces L of T as follows:

Z(L)="Y 272 (2.2)

zeLl

Where | - | is defined as the hamming weight of -.

The approximations of H®! are based on choice of £. For any given k-dimensional
subspace £, there is the corresponding approximation which has rank 2*:

L) = (2.3)

NCoAo] > Ja )
QkZ xeﬁ

9



The above decomposition has rank 2¥ because there are a total of 2* bitstrings in a
k-dimensional subspace £, and each bitstring corresponds to a unique stabilizer state.

Definition 2.2 (Approximation Error:). The error function ¢ is defined such that any given
approzimation |L), the error is given by:

o1L) =1~ [[(H L)

Bravyi and Gosset provides several algebraic steps and shows that this error is precisely
equal to [5]:

2k1)2t
- Z(L)

Thus, to minimize the error, one must minimize Z(£). Bravyi and Gosset’s paper shows
that if k is chosen to the positive number satisfying 4 > 2Fv2/§ > 2. then one can find a

subspace with error less than ¢ after sampling O(%) k-dimensional subspaces [5]. Moreover,
1.17¢
=5

5(1£)) =1 (2.4)

the rank of this subspace will be 2% which is approximatly W which is in O(

10



Chapter 3

Clifford and stabilizer
decompositions

In Bravyi et al.’s 2019 paper [!], the so-called sum-over-Clifford method is presented to
simulate arbitrary unitary circuits by finding J-approximate decompositions into stabilizer
states, and is stated to be comparable in efficiency to gadgetization methods, but at the at
the benefit of being more robust.

Proposition 3.1 (Sum-over-Cliffords method, [/, sec. 2.3.2]). Given a unitary circuit U on
an n-qubit system, we claim we can approximate within arbitrary error 0 the output U|0™)
by a superposition 1 of k ~ O(672) stabilizer states:

k
[U10") = [ <6, [1h) =D baCal0™),
a=1

where Cy, are Clifford operators, using some form of random sampling.

The choice of approximating with stabilizer decompositions is not an arbitrary one: the
rank of a pure state’s stabilizer decomposition is actually a measure of magic for pure states.
In other words, stabilizer rank quantifies the difficulty’ of simulating a circuit with our pure
state as an outcome [10].

Definition 3.1 (Stabilizer rank, [0]). The stabilizer rank x(1) of a pure state 1 on an
n-qubit system is the smallest integer for which v can be written as a superposition of x (1)
stabilizer states.

However, as there are finitely many stabilizer states, almost every® state vector will
attain the maximal stabilizer rank 2™ of the size of a basis for the system, which can be
known via Sard’s theorem. Consequently, this implies arbitrary unitary circuits are difficult
to simulate. It is for this reason we introduce the concept of approximate stabilizer de-
compositions, which analogously quantifies the approximation of a arbitrary unitary circuit
with a circuit that is easier to simulate.

Definition 3.2 (Approximate stabilizer rank, [1, def. 2]). Given § > 0, the §-approzimate
stabilizer rank x5(1) of a pure state 1b on an n-qubit system is the smallest integer for which
¥ can be approximated within 6 as a superposition of x5(1) stabilizer states.

'With respect to the stabilizer formalism, meaning in terms of T-cost.
2I.e., with probability 1.
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For the purpose of obtaining decompositions of unitary operators themselves, we intro-
duce analogous definitions for Clifford decompositions.

Definition 3.3 (Exact and approximate Clifford rank). For an operator on a quantum
system, we define the exact and approzimate Clifford ranks for decompositions into linear
combinations of Clifford operators similarly.

3.1 Restatement of decomposition problem

Problem. Suppose we are in C™ and have a large but finite subset of wvectors X =
{z1,...,24} that spans the space. Given an arbitrary vector in C", how can we find a
decomposition by elements of X within error of at most § that minimizes the rank, or num-
ber of terms, of the decomposition?

In our case, our overfull spanning sets are the stabilizer states and Clifford operators
for a state space and its space of operators. We were tasked with investigating Clifford
decompositions of operators by NASA Ames for use in modified stabilizer simulations; such
has been mentioned as an area of development for other quantum simulators [3, 14].

e Known extensively in signal processing literature as the sparsification problem [20].

e Known problem in quantum information theory in constructing certain types of codes,
such as Reed-Muller codes [3].

Finding a J-approximate decomposition into k elements of X is equivalent to being
within ¢ distance of the k-dimensional subspace spanned by those elements.

Definition 3.4 (Grassmannian, Gri(C")). We define the Grassmannian Gryi(C™) to be the
collection of all k-dimensional subspaces of C™. On account of the correspondence between
the k-dimensional subspaces and k-rank projection operators, we are endowed with a inner
product and metric given by:

(W, V) @y (cny := (Projyy, Projy) = Tr(Projly, Projy ),

distanora (W, V) = || Projy — Projyy || = =/ Tr((Projy, — Projy)f (Projy, — Projyy )]

Grassmannians have more structure than simply an inner product, and are actually
dimension k(n — k) compact smooth manifolds constructed from a quotient of the unitary
group U(C™). This, however, is not relevant to us, as we will primarily care about only
geometric considerations related to the various forms of metrics and inner products that
can be induced on Grg(C").

With a metric and inner product established on the Grassmannians relating the geom-
etry of linear subspaces, this problem of finding such k-rank §-approximations turns into a
covering problem Gry(C").

3.2 Computational geometry viewpoint

Covering lemmas are basic tools in computational geometry as intermediary technical result
concerning pairing down a cover for a subset of a metric space to form a subcover with
desirable properties.

12



Theorem 3.1 (3r-covering lemma). Given a cover for a subset of a sufficiently nice metric
space, there exists a subcover consisting of pairwise disjoint sets that can be dilated by 3 to
once again cover the entire subset.

Lifting a cover of d-balls on Gr(C™) to C™ via the isometry provides a covering by regions
that guarantee a d-approximate k-decomposition, hence we wish to reduce our search space
of subspaces check for decompositions.

Optimal configurations for packings minimize the angles between the centers of these
balls, subject to restrictions on the maximal diameter according to a pre-determined error
bound.

Theorem 3.2 (Conway-Hardin-Sloan simplex bound, [18, cor. 4]). Given a finite set S C
Gri(C"™), the largest inner product a between any two distinct subspaces in S satisfies

kS| —n

> -
= kn|S| -n’

where equality occurs if and only if |S| = n? and and S form a simplex in a hyperplane of
R

Recalling our problem, since we are starting with a given overfull basis to pare down to
a packing, finding any near-optimal configuration depends on the geometry of the spanning
set.

3.2.1 Geometry of stabilizer states

The configuration of stabilizer states of an n-qubit system are fairly well understood, as per
Garcia, Markov, and Cross’s 2017 paper, On the Geometry of Stabilizer States [9].

e Stabilizer states are distributed uniformly on the unit circle of the state space, and
locally are identical in with respect to relations with nearest neighbors.

e The maximal inner product attainable by any two n-qubit stabilizer states is 1/v/2,
or equivalently, the minimal distance is V2 — v/2 ~ 0.7.

e The probability of randomly sampling nearby stabilizer states approaches zero as the
number of qubits increases, which would make it difficult to naively construct high
resolution packings.

3.2.2 Geometry of Clifford operators

It is known that the collection of Clifford operators for a quantum system form a 3-design

[22].

Definition 3.5 (Unitary t-design, [22, def. 1]). A finite collection of unitaries S of dimen-
sion d is said to be a t-design for some integer t if for all linear operators X on C*, the
following holds:

Z C®tX(CT)®t = / U®tX(UT)®t dptHaar -
ces U(d)

13



A rough interpretation of this property is that the Cliffords operators are distributed
very evenly, enough for 3-twirling to be equivalent to Haar-random unitary twirls.

Oszmaniec, Sawicki, and Horodecki [14] connects unitary t-designs to e-nets, meaning
subsets of unitaries that approximate every unitary operation up error : only universal
gatesets form e-nets for arbitrary € > 0, therefore there is a limit to which we can approxi-
mate with Cliffords.

3.3 Discussion on decomposition methods

Naively, searching through subspaces of very high-dimensional spaces is hard: in the case
of k dimensional-subspaces spanned by Clifford operators, our search space is on the order
of ().

Greedy algorithms for searching through a collection of subspace coverings containing
a vector generally exist, but likely would require looking through the literature to deal
with the non-orthogonality of potential decompositions; a good place to start would be [20,
sec. II1.D] and move on to reviewing more current methods in signal processing for the
sparse representation problem.

However, since stabilizer states and Clifford operators are distributed relatively uni-
formly in space, these points may already form a near-optimal packing configuration. There-
fore if looking for a computational advantage by reducing our search space of subspaces,
we may already be in a worse case scenario. It follows that issues regarding the lower
bounds on minimal error present in stabilizer or Clifford decompositions may present issues
in implementing these methods computationally.

3.4 Application: Clifford decompositions of small
Kraus operators with mixed-integer linear pro-
gramming

One approach to simulating a Kraus operator K; within the stabilizer formalism is to
decompose the operator into a weighted sum of Cliffords,

Xs
K; = g ¢iR;
i

Where ;s is the rank required to have § Lo error in the decomposition. Given a circuit
|t)) — UpoKj0Uzo Ky and the decompositions of the Kraus operators into Cliffords, we can
simulate the circuit by creating xs; copies of our stabilizer tableau for Kraus operator Kj,
and applying one Clifford R; from the decomp to one tableau S;. At the end of our circuit,
we can convert each tableau into it’s vector representation, scale by the stored scalar c;,
and combine it with all other tableaus to retrieve the final ket of the circuit.

To find such decompositions, we can formulate this as an optimization problem by
introducing the following variables:c.ea1 € R™, the real part of the coefficients; cjnag € R™,
the imaginary part of the coefficients;y € {0,1}™, binary variables indicating whether a
Clifford operator is used;e;ea; € R?, the real part of the error termsl; €imag € R%, the
imaginary part of the error terms. A is the weight placed on minimizing the rank. The
larger lambda is the more weight will be placed on minimizing rank instead of error and

14



vice versa. The objective is to minimize the sum of the errors and the number of vectors
used:

4 4 m
min E €real;i T § €imag,i T A E Yj
i—1 i=1 j=1

Subject to the following constraints for the real and imaginary parts:

Xs
E (Rreal,ijcreal,j - Rimag,ijcimag,j) — Treal,i < €real,i Vi
Jj=1
X6
Treali — E (Rreal,ijcreal,j - Rimag,ijcimag,j) < €real,i Vi
Jj=1
Xs
E (Rreal,ijcimag,j + Rimag,ijcreal,j) — Timagi < €imag,i Vi
Jj=1
Xs
Timag,i — E (Rreal,ijCimag,j + Rimag,ijCreal,j) < €imag,i Vi
Jj=1

Linking constraints to ensure coeflicients are zero if not used:
Creal,j < Myj vj

Creal,j > *Myj Vj
Cimag,j < Myj vj
Cimag,j > _Myj VJ

Note that our search space is the finite set of n-qubit Cliffords, which becomes intractible
at n = 3.

n n
Cul = T]2(47 — 1) = 27420 T (@ - 1)

J=1 Jj=1
This tells us that at higher qubit systems, finding a suitable Clifford decomposition
using mixed integer linear programming becomes infeasible. Also, the memory scales as
O(Hf &5(K;)) because we must create {s(K;) copies of however many tableaus we currently
have each time we wish to apply another Kraus. As an example, consider a set of two Kraus
operators, each with a rank two decomposition. Then every time we apply either Kraus to
our system, our system grows by a factor of two, so the number of tableaus we are storing
grows to 2F where k is the number of Kraus operators being applied. The scaling of this

method is unfavorable, which led us to consider other potential solutions.
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Chapter 4

Dilation Methods

A noise channel & = {Kj, ..., K‘£i|} is a collection of distinct Kraus operators that form a
completely positive and trace preserving (CPTP) map [13]. Where the channel size || is
number of Kraus operators contained in the noise channel. Kraus operators are traditionally
non-clifford and therefor can not be naively applied within stabilizer formalism.

However through the application of stabilizer tableau’s [2] and T-gadgets [0], we can
implement circuits of unitary operators using stabilizer formalism in a reasonable runtime.
In an effort to exploit these tools Suri & Marshall proposed the use of unitary dilation’s
to simulate noise using tools originally designed for simulating unitary circuits [19]. Bellow
we discuss how unitaries can be simulating using stabilizer formalism, before exploring the
potential applications of applying noise to a quantum circuit through Stinespring and Sz.-
Nagy dilation’s Dilations. We note that for the remainder of this section we assume that
any noise channel £ represents local noise and thus operates on one qubit.

4.1 Simulating Unitaries

A unitary operators can be arbitrarily approximated using the CNOT, Hadamard, Phase
and T gates. In other words {CNOT, H, P, T} are considered a universal gate set.

S S R ) P b )
’H_\/i[l ] e I EE R

While we know that its theoretically possible to form a Clifford + T approximation
of any unitary, it is useful to have an algorithm capable of finding these decomposi-
tions. The problem of decomposing arbitrary unitaries into, {CNOT,H,P,T} gates is a
well studied problem with recent results indicating that the upper bound on the number of
{CNOT,H,P, T} gates required to form an accurate decomposition using the Solovay-Kiteav
algorihtm is O(log(%)!44042--40) [11].

As discussed in section 2 the {CNOT,H,P} are contained in the Clifford group, and can
therefore be efficiently simulated using stabilizer formalism. Whereas the T' gate can be
efficiently simulated by adding one ancillary |T") magic gate for every T gate in the unitary
decomposition. At this point its useful to have some measure of magic as it will determine
how many |7T') ancilia must be added to simulate a unitary.

CNOT =

O O = O
= o o O
o = O O

1
0
0
0
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Definition 4.1 (T-Count). € T-Count t(-) is the number of T gates needed to approzimate
an arbitrary unitary in terms of C = {CNOT, H, P,T} gates such that || K; — Hé:o Cil| <e

Using the improved Solovay-Kitaev algorithm [11] along with T-count, we can define a
general algorithm for simulating any unitary within stabilizer formalism.

Algorithm 1 Unitary Simulation UAPPLY (U,S)

1: Input 1: A decomposed Unitary U = [, C;

2: Input 1: A set of stabilizer tableau’s S

3: for j =1to y do

4: if C; contains a T" gate then

5 Use a T-Gadget

6 else

7: Apply C; using the associated tableau rule.
8

9

end if
. end for

Algorithm 2 Unitary Simulation USIM(U)

Input 1: A Unitary U

Decompose U into ?:1 C; = U

Compute t = t.(U)

Create a circuit S with ¢ |T') gates and a state |1))
UAPPLY (U,S)

For example for the unitary U € C2*2, where U = HPT, USIM(U) would return the
following circuit

) —

) —{ HHPHo—

Figure 4.1: Unitary Simulation of U = HPT

4.2 Sz.-Nagy Dilation Approach

The first dilation approach will involve dilating each Kraus operator K; € £ separately. To
do this we note that all Kraus operators are contractions lemma 4.1, and as a result they
can all be dilated using the Sz.-Nagy unitary dilation.

Lemma 4.1 (Kraus Contraction). For all K; € & K is a contraction operator

Using the fact that a operator sum representation of a noise channel is trace preserving
we know that Zf:o KK' = I. By extension we know that (vKT, Kv) = ||v||> which implies
that ||Kv||*> < ||[v]|?>. Therefore by definition a Kraus operator K is a contraction which
proves lemma 4.1.
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Theorem 4.1 (Sz.-Nagy Dilation [19]). For every linear contraction operator A on a com-
plex finite-dimensional Hilbert space H, there exists a unitary dilation operator U : HQH —
H @ H in the following form:

Ur— A VI — AAT
AT \vr—ata At )¢
Using lemma 4.1 and theorem 4.1 we can design a quantum circuit that is equivalent to
K |¢), Where K is the Sz.-Nagy dilation of K.

10)

[¥)

The circuit detailed above is equivalent to first computing K (|0) ® [¢)) = [0) @ K|¢) +
1) ® V1 — KTK|¢), and second measuring onto the 0 computational basis to retrieve com-
ponent of interest, K|¢). We can now define an algorithm that generalizes this process to
stabilizer formalism

Algorithm 3 NAGYSINGLE(K)

Input: A Kraus operator K

Dilate K — K

Decompose K, ; into [1-.C

Compute t = t.(K)

Create a set of tableaux that represent a circuit S with ¢ |T) gates, one |0) ancilla,
and a state [¢)

6: UAPPLY (K ,S)

7. Apply a forced measurement onto the 0 computational basis to retrieve K7 [))

For example, a possible call of Algorithm 3, NAGYSINGLE(K), could generate and
execute a circuit like that drawn bellow.

0
0) — 3> D
H®H P®H X
V) — D
0
1) X
0
|T2> /7<
0
’T3> —X

Figure 4.2: Circuit of Sz.-Nagy dilated Kraus K =HQH -T® - P H - I®T -T® I

18



Equipped with this intuition we can now construct an algorithm that allows us to
apply multiple noise channels, instead of an individual Kraus operator. Note that the
algorithm defined bellow makes use of the quantum trajectories method since it allows us
to approximate the application of k£ noise channels without requiring the application of all k&
noise channels in their entirety. In fact, because the Sz.-Nagy dilation is a unitary dilation for
one Kraus operator at a time, it is only natural that we make use of the quantum trajectories
method which also applies one Kraus operator at a time. The quantum trajectories approach
converges to the application of the all k noise channels in their entirety. [? ].

Algorithm 4 Sz.-Nagy’s Algorithm

1: Input 1: A list of noise channels = = {&, &, ..., &}

2: Input 2: Error for the T-Gadget compression (¢)

3: Input 3: Error for the the {CNOT,H,P,T} decomposition (€)
4: Input 4: Error for the approximate inner product at line 19 (n)
5. Input 5: Error for the the final state (A)

6: t <0

7. fort=1to k do

8: for j =1 to || do

9: Dilate Kﬁzﬁj — f(&,j

10: Compute t(Ke, ;)

11: end for R

12: t—t+ maxkéiyjegi{te(l(&,j)}

13: end for

14:

15: for ¢ =1 to [55]| do

16: Create a circuit S with ¢ |T") gates, one |0) ancilla, and a state |¢))
17: for i =1to k do

18: Pick r € [0, 1]

19: for j =1 to |&] do

20: Copy S — 51

21: UAPPLY (K¢, ;,51)

22: Retrieve K¢, ;1) and compute p; ; = || K, ; [¢) ||
23: if p;; <r then

24: Set S+ 54

25: break

26: else

27: T=T —Dig

28: Delete S;

29: end if
30: end for
31: end for
32: Apply a forced measurement onto the 0 computational basis to retrieve a

singular quantum trajectory |Q,) = Ky --- KoK [¢)

33: end for

34: Take the average of all [25] |Qg) to retrieve & o &y 0... 0 & (|1))
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Sz.-Nagy’s Algorithm can be described as follows. We begin with k noise channels
= = {&,&,...,&} and an initial state |1)). Next we find an upper bound for the total
number of T-gates a single quantum trajectory may require, namely we must compute
t = Hf:o T.(&), where T. (&) = Maxg e {t(K;;)}. Lastly we create a circuit S with ¢

a7t
T-gadgets and one ancila, which can be represented using a set of %ﬁ tableaus {s;},; %

[5]. At this point we have completed instantiating our circuit, so we can begin computing a
quantum trajectory first uniformly generating a number r € [0, 1]. Next we take {; € = and
pick the first dilated Kraus operator K 1,1. We then make a copy S; of the set of tableaus S
and apply the Clifford + T decomposition of K 1,1. 51 functionally serves as a playground
to test out a potential K compute p1; = ||[K1.1|¢) || up to some error 7 using fast norm
estimation [1]. If py 1 is < r keep S; and dispose of S. If not dispose of S; and keep S and
r =1 —p1,1. It is not guaranteed that the first Kruas operator will be choosen so we repeat
the process of computing p; ;’s until a Kraus is chosen. Only after a Kraus operator has
been chosen for the first channel can we move onto the next channel to repeat the process
of selecting a second Kraus operator. We continue until we have chosen a Kraus operator
from each noise channel. At the end of this process we retrieve a single quantum trajectory
|Qq) = Kj--- KoK |¢) through a forced measurement onto the 0 computational basis.
However in order to achieve a final state |¢)') that approximates a traditional application of
the k noise channels within some error A, we must compute [é] quantum trajectories [?

-

Theorem 4.2 (Sz.-Nagy Runtime Complexity).

1 3, —2 t

O(Wsn n “1.17")
Where s = Hf:o &, t = H?:o Tc(&), n is the dimension of the input |), n is the
acceptable error of each inner product calculation, & is the acceptable error of the T-gadget
compression, and A is the acceptable error of the final solution. Where error is defined as

1= (yly)?

The runtime complexity is a result of computing at most s inner products per trajectory
3,—2 t

using fast norm estimation each of which grows at a rate of O(%). The cost of com-

puting the Sz.-Nagy Dilation is O(sn®) which is dominated by the leading term contained

in the runtime complexity. [1]

Theorem 4.3 (Sz.-Nagy Space Complexity). The space complexity of the simulating all
[5%1 trajectories grows as
LT +2)?

o 86

)

The space complexity is a result of storing %ﬁ tableau’s each of which can be stored

as a binary matrix with an associated cost of (t;—m bytes. Additionally at any given point

we store two copies of the set of tableau’s which doubles the space required.

4.3 Stinespring’s Dilation Approach

The second dilation approach involves embedding the entire noise channel £ into a unitary
operator using Stinespring’s Dilation.
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Theorem 4.4 (Stinespring’s Dilation). Given a quantum error channel § = {K1, Ko, ...Kp,}
we can lift the channel to a unitary of dimension 2™x2™ by the following construction, where
we fill in the remaining entries using a Gram-Schmidt process such that the K¢, is unitary.

K

Using theorem 4.4 we can design a process that is equivalent to {g 0&g_10...0&1(|¢) (¥])
but operates within the stabilizer formalism. Take for example, the application of one
noise channels ¢; which has size || = 2 and has been dilated to K¢,. We find that
Ke (10) @ |[4)) = (gﬁl’l ;zi) = [¢’). We can then compute tr({¢'|¢)")) which is equivalent

1,2
to Z? K; ) (] KZT p'. We can now generalize this one noise channel example to k noise
channels using the following algorithm.

Algorithm 5 Stinespring’s Algorithm

1: Input 1: A list of noise channels = = {&, &, ..., &}
2: 1<+ 0

3: fori=1to k do

4 Dilate K¢, — K¢,
5: Compute t.(Ke,)
6

7

8

9

tt+ maxkgegi{te(f(&)}
. end for

. Create a set of tableaux that represent a circuit S with ¢ |T') gates, loga (37, |&])
|0) ancilla, and a state |v)
10:
11: for =1 to k do
1. UAPPLY(I®' ® K¢,.9)
13: end for
14: Extract the final state |¢') and compute tr((¢'|¢))) = p’

For example the associated circuit for applying two noise channels & and & where
te(K¢ ) =1 and t(K¢,) = 2, would be the following.

The first step of Stinespring’s Algorithms, like Sz.-Nagy’s algorithm, is to compute the
number of T gates that will be used throughout the simulation. The first major deviation
is that unlike Nagy’s algorithm where only one ancillary qubit is required, for Stinespring’s
algorithm 1 ancillary qubit is added for every noise channel. The circuit S will contain
logg(zzzzl |&i|) ancillary |0) qubits and ¢ T-gadgets which can again be stored using %ﬁ
stabilizer tableau’s. Afterwords we simply apply each dilated noise channel, before finally
taking the outer product of the final state [1)'). We note that taking the outer product of
the final state |¢’) is a post-processing step that can only be computing outside of stabilizer
formalism. However we can reduce the computation burden of this step by only summing

the outer product of all 2" x 2™ blocks of the output vector.

21



==

10) [® Ke, —
K¢,

|¥) —

Figure 4.3: The application of two arbitrary noise channel onto a circuit using Stinespring’s dilation.

Theorem 4.5 (Stinespring’s Algorithm Runtime Complexity). O(n? Hle |&i|+n3 Zle &),
where n is the qubit size of the initial state |1)

The runtime complexity is a result of the prodf:1|§i| outer products one must take each
of which contributes a cost of n?. The final outer product computation is the most expensive
portion of the algorithm, however we do note that computing the stein springs dilation’s
requires a Gram-Schmit which contributes a cost of n3 Zle &|3

Theorem 4.6 (Stinespring’s Algorithm Space Complexity). O((1+1092(‘;)5+t)21'17t), where
k

s = Hle |&|, n is the qubit size of the initial state ), t = Y 7 t(Ky,), and § is the
acceptable error of the T-gadget compression.

The space complexity is similar to that of Sz.-Nagy’s algorithm, with the only change
being that each tableau has dimension (1 + loga(s) + t) instead of (2 + ).

4.4 Examples

Next we investigate how many noise channels can be reasonably simulated using both di-
lation approaches. We take amplitude dampening channel as a case study since its one of
the few frequently used non-Clifford 1-qubit noise channels.

iy . . ) S R o P
Definition 4.2 (Amplitude Dampening Channel). {4p = {K1 = {0 M} Ko = [0 0 ] }

From the space complexity of both Nagy and Stinespring’s algorithms we know that
the T-count is the driving factor in memory consumption. As a result our first step is
minimizing the t-count in order to best estimate how many £4p channels a user could
apply. To do this we first note that K> is a projector so an equivalent process to applying
K, is first applying an X gate then applying a forced projective measurement of 0. In other
words K |[¢)) = Py X [¢) is a T gate free operation. Therefore we can focus our efforts
on quantifying the T-Count of K. The Sz.-Nagy dilated form of K can be recast as the
following circuit.
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Figure 4.5: Stinespring Dilated Amplitude Dampening Circuit Equivalence
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Figure 4.4: Sz.-Nagy Dilated Amplitude Dampening Circuit Equivalence

The Stinespring dilation of £4p can also be recast as the following circuit through a few
manipulations. Both circuit derivations are detailed in Appendix A.

We can observe that most of our T-Cost comes from the 2 R, gates in both the Sz.-
Nagy and Stinespring dilated unitaries. Luckily we know that the approximate t-cost is a
function of how precise we want our p to be. For example a p = .01 would require 3 T
gates per R, gate, while a p = .1 would require 2 T gates per R, gate [12]. Using these T’
count estimates for both the Sz.-Nagy and Stinespring algorithms we find that a user could
reasonably apply 10-15 noise channels on a 16GB of memory.
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Chapter 5

K-gadgets and Compression

The dilation methods are versatile in that they can simulate all combinations of Kraus oper-
ators. However, some quantum systems may experience the same type of noise repeatedly.
In systems like these, rather than converting Kraus operators into unitary matrices and
decomposing them into sequences of C,H,P and T gates, perhaps one can apply a K-gadget
similar to what was done by Bravyi and Gosset [5]. The previous Chapter noted how the
T-cost of even simple amplitude dampening channels could reach up to four per Kraus
operator. The main benefit of using a K-gadget method is that instead of requiring four
T-gadgets, we would only need a single K-gadget per Kraus operator.

Lemma 5.1. Operating under the same gadget construction as the T-gadget, one can com-

press diagonal matrices K1 = (8 2) and off-diagonal matrices Ko = <2 8) with corre-

sponding magic states mi = <Z> and mg = (2) The corresponding gadgets are noted in

the appendix, and are easy to verify.

Moreover, both of these magic states can be written as a linear combination of two
stabilizer states as the stabilizer states form a basis over C? and C? is dimension 2 over
C. Thus, any Kraus operator which is either diagonal or off-diagonal has a corresponding
magic state |M) = ‘0>+|1> where |0) = |f) and |1) = «|g), for any linearly independent
pair of stabilizers |f) and |g) and some normalization constant c¢. For example, the Kraus

channel <[1) \/%2>, corresponding to the amplitude dampening channel with parameter

1
p = 0.5, has the corresponding magic state |M) = ( \/§> . This magic state can be written
2

. o 1+)+2=22|0)
as a linear combination of |0) and |+) where |M) = (1 — @) |0) + (@) |+) = 27\/‘/66,

6
2-v/3)

where o = ( 5~ 0.1. Notice that this parameterization of |M) in terms of « and two

stabilizer states is really just a generalization of the |H)-state, with the |H)-state being the
result for o = 1 and two specific stabilizer states. Like Bravyi and Gosset’s method, we
aim to find an efficient decomposition of:

L)%

Z |Z1...2¢) Zam |z129. . 2)
V :ceﬁ Vv K ’C xeﬁ
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Where K(£) = 32, et vIietulalel+yl | with v = (f|g). We similarly define an approxi-
mation corresponding to a subspace £ with:

1£) =

Z\xl ) Za' Na@g...zy)
V xEL V xEL

We use the same error function, and we can see that:

1
I E || +lyl =+l (5.1)
(0% 14 .
V l< (}F%)t‘K (ﬁ) rng,yGL

Rather than summing over all z € F}, we can sum over all possible values of |z + y|,

(M®'|L) =

ranging from 0 to ¢. For any given y, the number of terms where |x + y| = i is
; t— . . :
equal to Z;:O <|§‘) (j _‘g|> where j is the number of one-bits that are flipped. Thus,
t— . . a- . . . oa-
<|g|> <j —‘?i|> counts the number of x terms which are j 1-bit-flips and i — j 0-bit-flips

away from y. Thus, using some combinatorics, we can simplify Equation 5.1 to the following
expression:

(M®|L) = \/szoﬂlyl zza; _ (gl) (tj—_lzz(l) (5.2)

yeLl i=0

The reason why we care about this error function is because it is significantly easier to
calculate, as rather than iterating over all bitstrings in F%, one only needs to iterate over
the terms in £, which is a subspace significantly smaller than F4. Using this inner product
formula, we ran several simulations to test how much we could compress [M)®", as well has
what the error would be relative to each compression rate.

1000 Samples, t = 10

]

T T T T T T T T T
5.0 5.5 6.0 6.5 7.0 75 8.0 8.5 9.0
k

Figure 5.1: Caption: Minimum error across 1000 samples of subspaces across different dimensions.
|M) has a = 0.5.

In figure 5.1 we sampled 1000 subspaces of F% with various for each dimension ranging
from 5 through 9 and we plotted the minimum estimation error across the 1000 samples
for each dimension. Notice using a 7-dimensional subspace, one can expect to achieve error
below 0.01 across 1000 samples using a dimension seven subspace. For comparison, the
method used in Bravyi and Gosset’s paper only suggests a dimension nine decomposition.
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The figure indicates that such magic states can be indeed be compressed, and that the true
compression rate is lower than what is indicated in [5] for small t values.

t=10,a=1/2

— k=7

—— 1/delt:
200 1 l/delta

150 A

Num Samples

50 A

T v T T v T v T
0.0100 0.0125 0.0150 0.0175 0.0200 0.0225 0.0250 0.0275 0.0300
Delta

Figure 5.2: Number of samples required to achieve subspace with specific error values

Moreover, the number of samples actually required to find a seven dimensional subspace
with corresponding approximation error less than 0.01 is actually quite small as well. Figure
5.2 shows the number of samples required to achieve a dimension 7 subspace with error less
than a specific delta when approximating |M )®t. This is shown in comparison to the
expected number of samples needed to approximate |H )®t using the T-state compression
method. Figure 5.2 show that the expected number of samples to achieve any given error
is actually fewer in the K-gadget case when o = 0.5 than the T-gadget case where « is
effectively equal to 1.

Figures 5.1 and 5.2 indicate that magic states with a = 0.5 can also be compressed
more efficiently than the bounds found in [5], and that sampling a sufficiently accurate
approximation would require fewer samples than expected in the o = 1 case.

Figure 5.3: Minimum error across 250 samples for various « values and subspace dimensions.

Figure 5.3 shows the minimum error in approximating | M >®10 across 250 samples, while

varying the dimensions sampled and the « values that make up |M). Indeed, the error
monotonically decreases as the dimension of the approximation increases. However, the
error does not monotonically increase as « increases.
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Figure 5.4: Approximations error across different k£ and «a-values.

Figure 5.4 is the result of figure 5.3 when viewed from a particular angle. The figure
shows thats that the gradient of the error with respect to the dimension differs for different
values of a. In fact, the magnitude of the gradient increases as « increases, indicating that
larger values for a benefit more from having higher rank than smaller values of . The plot
also indicates that magic states written with higher values of o can achieve overall lower
levels of error than magic states with lower values of .

The research on K-gadgets is still ongoing and there are many open questions that we
have yet to answer. Our goal with K-gadgets is to find a similar bound to the bound provided
in the T-gadget compression method, which would inform what subspaces to look over for
lower rank compositions, as well as an the order of the expecterd number of samples required
to find a subspace with sufficiently low error. We are also interested in how changing the
two stabilizer states which compose | M) would affect the compression rate or the sampling
process.
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Chapter 6

Conclusion and Discussion

We end with a brief comparison and discussion of the four methods proposed throughout
this report. Note that the Clifford decomposition approach is intentionally omitted since
the 0(2’“) space complexity allowed us to rule out this approach early on in our research. the
complexity analysis of the K-gadget approach is a rough estimate based on the numerical
simulations listed in section 5.

Name Runtime Complexity Space Complexity | # of Noise Channels
Sz.-Nagy O(s555n°n21.17") O(2 L1027 10-15
Stinespring | O(n* [T, |&[ +n® YL, |6[F) | O(GHe=lgfolir) 10-15
K-Gadget O(=] - ¢]) O (1 (Li020)7 ) 57-11,312

Table 6.1: Comparison of Algorithms. Number of noise channels is computed given a 16GB limit in
memory. For Sz.-Nagy and Stinespring the range is a result of varying precision of the noise and for
the K-gadget approach the range is a result of varying « from 1 to 0

Simulating Quantum circuits is a computationally difficult problem, and the stabilizer
formalism provides one of many possible routes to classical simulation. The stabilizer for-
malism is quite restrictive, only allowing a small set of unitary operators to be simulated
efficiently. Furthermore, simulating non-unitary noise channels within the stabilizer formal-
ism is a difficult problem as it does not natively support them. We have provided two main
methods for implementing them.

The two dilation methods allow us to lift our Kraus operator or noise channel to a higher
Hilbert space such that the lifted operator is unitary, and apply that unitary matrix to our
stabilizer formalism using Clifford + T decomposition and applying Bravyi and Gosset’s
work. The Stinespring’s approach allows us to simulate the whole channel with the high up-
front computational cost of using the Gram Schmidt process to create our unitary matrices.
It remains an open question whether there are more computationally friendly approaches
to this process. The post-processing cost of converting the output to OSR is also a hefty
computation, requiring Hle |&i| outer products. Comparatively, the Sz.- Nagy approach
incurs more cost during the runtime of the circuit itself, requiring the use of quantum
trajectories. Namely, the requirement of applying the Kraus operator K to the current
state to find it’s respective probability is the largest contributer to the algorithm’s runtime

It should be noted that the K-gadgets method allows us to simulate diagonal and off-
diagonal matrices with reasonable runtime. This means that we are not restricted to opera-
tors that satisfy the noise channel requirement > K K t = I, but this method can be applied
to any diagonal and off-diagonal matrix. As is explained in Appendix A, this can also work
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for arbitrary 2 x 2 operators, but with an exponential cost of 2¥ where is the number of
operators applied. It remains an open question what other methods can be employed to
more efficiently simulate these arbitrary operators.
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Appendix A

Circuit Equivalences

A.1 Circuit Derivations For Section 3.4

First and foremost we’d like to thank Namit Anand for proposing the application of Match-
gates to solve this problem for Sz.-Nagy dilation and for solving this problem for the Stine-
spring dilation case.

A.1.1 Amplitude Dampening Circuit for Sz.Nagy Dilation

The goal will be to get approximate minimal T-Counts of the amplitude dampening channel
using Sz. Nagy Dilation and Matchgates. Where the amplitude dampening channel is

defined as follows
_ |1 0 {0 P
§AD—{K1—|:O %1_]3},}(2—[0 0]}

We will focus our attention on K, whose Sz.-Nagy dilation is the following, when p = sin? (g)

1 0 0 0
5~ |0 cos(g) 0 sm(g)
Ko=1o 0o -1 o0

0 sm(g) 0 —cos(g)

1 0 0 0
. - |0 cos() sin(g) 0
CNOT K, CNOT = Gap(0) = | | sin(?) —cos(?) 0
0 0 0 ~1

In other words these two circuits are identical

~

Ky CA;'AB

fan)
A\
fan)
A\

Ramelow established some useful circuit identities for Givens rotations which we use to
rewrite G4p as the following circuit [17]
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Using the identity that R,(f) can be rewritten as R,(0) = STHRz(—0)H'S, we can
again rewrite the following circuit equality

\ %

s HaH o -5

st B.(-0) [t

A.1.2 Amplitude Dampening Circuit for Stinespring’s Dila-
tion

The Stinespring dilation for £4p gives us the following unitary matrix if we parameterize
p = sin?(0/2)

0 0
cos(0/2) —sin(0/2)
sin(6/2)  cos(0/2)

0 0

G () =

S O O
— o o O

This is known as a Givens rotation. It is easy to check that:
Gl) =exp[—i0/2(Y @ X — X ®Y)]

To find an optimal Clifford+T decomposition of this gate, we use the following obser-
vations. First, recall that the iSWAP gate is a Clifford unitary defined as:

iISWAP =

o O O
O = O O
O O = O
= o o O

We can parameterize this gate as the following equality and can recover the above gate
for 6 = 7.

iISWAP(0) = exp[i0/2(X @ X +Y ®Y)]
The first claim is that:
GO) =(T"'®T) -iISWAP®) - (T® T 1)

This tells us how to generate the Givens rotation using T-gates and iSWAP gates. Now,
using the fact that [X ® X, Y ® Y] = 0, we can simplify the iSWAP gate as:

iISWAP(6) = exp [i0/2(X @ X)] - exp [i6/2(Y @ Y)]
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Moreover, using the following two identities:
HZH'=X and (HSH)Z(HSH) =-Y

exp [i0/2(Z ® Z)] = CNOT - (I ® R.(0)) - CNOT

we can write the iSWAP gate as the following circuit

iISWAP(#) = H®2.CNOT-(IQR.(0))-CNOT-H®2.(HSH)®2.CNOT-(I®R.(0))-CNOT-(HSH)'®?
—{] o HsHar
oo <

A\
N?U
—

>
SN—
o
A\

H st — gt

a

A.2 K-gadgets

Utilizing the fact that we can force a measurement in the Z basis to be |0), we create a gadget

@ g] Then the gadgetized K

that can apply a Kraus operator to a state |1). Let K = {0

is |K) = [Z} . Then to apply the diagonal Kraus operator, we apply the following circuit:

) ——

k) —&——~]

Which produces K [¢). A similar circuit works for the diagonal matrix K = [2 g]

b

a

Let |K) = { ] Then

) —9—

0

|K) ——x—{ ]

gives you K ).

a b

d
into the sum of the diagonal components and the off-diagonal components. However, it has
scaling similar to Clifford decomp of rank 2, that is, it scales as 2¥ where k is the number
of applied Kraus operators.

Note that you can also simulate any Kraus operator K = ] by decomposing it
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